Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).
CAS Article PubMed Google Scholar
Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol. 17, R233–R236 (2007).
CAS Article PubMed Google Scholar
Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).
CAS Article PubMed Google Scholar
Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).
CAS Article PubMed Google Scholar
Orlando, V. & Paro, R. Mapping Polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75, 1187–1198 (1993).
CAS Article PubMed Google Scholar
Blat, Y. & Kleckner, N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98, 249–259 (1999).
CAS Article PubMed Google Scholar
Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000). This paper introduced the ChIP–chip technique, used here to map Gal4 and Ste12 binding sites in the yeast genome.
CAS Article PubMed Google Scholar
Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).
CAS Article PubMed PubMed Central Google Scholar
Robyr, D. et al. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446 (2002).
CAS Article PubMed Google Scholar
Robyr, D. & Grunstein, M. Genomewide histone acetylation microarrays. Methods 31, 83–89 (2003).
CAS Article PubMed Google Scholar
Bernstein, B. E., Liu, C. L., Humphrey, E. L., Perlstein, E. O. & Schreiber, S. L. Global nucleosome occupancy in yeast. Genome Biol. 5, R62 (2004).
Article PubMed PubMed Central Google Scholar
Lee, C. K., Shibata, Y., Rao, B., Strahl, B. D. & Lieb, J. D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nature Genet. 36, 900–905 (2004).
CAS Article PubMed Google Scholar
Ozsolak, F., Song, J. S., Liu, X. S. & Fisher, D. E. High-throughput mapping of the chromatin structure of human promoters. Nature Biotechnol. 25, 244–248 (2007). This study mapped nucleosome positions across ∼3,700 promoters in seven human cell lines using MNase digestion followed by hybridization to tiling microarrays.
CAS Article Google Scholar
Impey, S. et al. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054 (2004).
CAS PubMed Google Scholar
Roh, T. Y., Ngau, W. C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nature Biotechnol. 22, 1013–1016 (2004).
CAS Article Google Scholar
Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006).
CAS Article PubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).
CAS Article PubMed Google Scholar
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).
CAS Article PubMed Google Scholar
Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).
CAS Article PubMed Google Scholar
Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007). Together with Reference 17, these studies were the first to demonstrate how ChIP–Seq can be used to profile histone modifications and DNA-binding sites across the entire human genome.
CAS Article PubMed PubMed Central Google Scholar
Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007).
CAS Article PubMed Google Scholar
Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Rev. Genet. 8, 286–298 (2007).
CAS Article PubMed Google Scholar
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).
CAS Article PubMed Google Scholar
Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).
CAS Article PubMed Google Scholar
Takai, D. & Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl Acad. Sci. USA 99, 3740–3745 (2002).
CAS Article PubMed PubMed Central Google Scholar
Ng, H. H. & Bird, A. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163 (1999).
CAS Article PubMed Google Scholar
Ioshikhes, I. P. & Zhang, M. Q. Large-scale human promoter mapping using CpG islands. Nature Genet. 26, 61–63 (2000).
CAS Article PubMed Google Scholar
Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).
CAS Article PubMed Google Scholar
Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405, 486–489 (2000).
CAS Article PubMed Google Scholar
Tate, P. H. & Bird, A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231 (1993).
CAS Article PubMed Google Scholar
Robertson, K. D. & Wolffe, A. P. DNA methylation in health and disease. Nature Rev. Genet. 1, 11–19 (2000).
CAS Article PubMed Google Scholar
Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).
CAS Article PubMed Google Scholar
Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet. 21, 163–167 (1999).
CAS Article PubMed Google Scholar
Zilberman, D. & Henikoff, S. Genome-wide analysis of DNA methylation patterns. Development 134, 3959–3965 (2007).
CAS Article PubMed Google Scholar
Bird, A. P. & Southern, E. M. Use of restriction enzymes to study eukaryotic DNA methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J. Mol. Biol. 118, 27–47 (1978).
CAS Article PubMed Google Scholar
Selker, E. U. et al. The methylated component of the Neurospora crassa genome. Nature 422, 893–897 (2003).
CAS Article PubMed Google Scholar
Khulan, B. et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res. 16, 1046–1055 (2006).
CAS PubMed PubMed Central Google Scholar
Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).
CAS Article PubMed Google Scholar
Yan, P. S. et al. Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res. 61, 8375–8380 (2001).
CAS PubMed Google Scholar
Hatada, I. et al. A microarray-based method for detecting methylated loci. J. Hum. Genet. 47, 448–451 (2002).
CAS Article PubMed Google Scholar
Rollins, R. A. et al. Large-scale structure of genomic methylation patterns. Genome Res. 16, 157–163 (2006).
CAS Article PubMed PubMed Central Google Scholar
Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).
CAS Article PubMed PubMed Central Google Scholar
Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).
CAS Article PubMed PubMed Central Google Scholar
Eads, C. A. et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 28, e32 (2000).
CAS Article PubMed PubMed Central Google Scholar
Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).
CAS Article PubMed PubMed Central Google Scholar
Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res. 30, e21 (2002).
Article PubMed PubMed Central Google Scholar
Gitan, R. S., Shi, H., Chen, C. M., Yan, P. S. & Huang, T. H. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res. 12, 158–164 (2002).
CAS Article PubMed PubMed Central Google Scholar
Dupont, J. M., Tost, J., Jammes, H. & Gut, I. G. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal. Biochem. 333, 119–127 (2004).
CAS Article PubMed Google Scholar
Mockler, T. C. et al. Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15 (2005).
CAS Article PubMed Google Scholar
Bibikova, M. et al. High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–393 (2006).
CAS Article PubMed PubMed Central Google Scholar
Rakyan, V. K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004).
Article CAS PubMed PubMed Central Google Scholar
Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet. 38, 1378–1385 (2006). The follow-up study from the Human Epigenome Project consortium, which profiled DNA methylation on three human chromosomes for several healthy tissues and primary cells by sequencing bisulphite-treated DNA.
CAS Article PubMed Google Scholar
Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet. 38, 149–153 (2006).
CAS Article PubMed Google Scholar
Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).
CAS Article PubMed Google Scholar
Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006). The first comprehensive map of DNA methylation for an entire genome, produced by performing mCIP combined with tiling microarrays with 35 bp resolution.
CAS Article PubMed Google Scholar
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 39, 61–69 (2007).
CAS Article PubMed Google Scholar
Shen, L. et al. Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet. 3, 2023–2036 (2007).
CAS Article PubMed Google Scholar
Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).
CAS Article PubMed Google Scholar
Das, R. et al. Computational prediction of methylation status in human genomic sequences. Proc. Natl Acad. Sci. USA 103, 10713–10716 (2006).
CAS Article PubMed PubMed Central Google Scholar
Fang, F., Fan, S., Zhang, X. & Zhang, M. Q. Predicting methylation status of CpG islands in the human brain. Bioinformatics 22, 2204–2209 (2006).
CAS Article PubMed Google Scholar
Bock, C. et al. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2, e26 (2006).
Article CAS PubMed PubMed Central Google Scholar
Bock, C., Walter, J., Paulsen, M. & Lengauer, T. CpG island mapping by epigenome prediction. PLoS Comput. Biol. 3, e110 (2007).
Article CAS PubMed PubMed Central Google Scholar
Roth, S. Y. & Allis, C. D. Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem. Sci. 17, 93–98 (1992).
CAS Article PubMed Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).
CAS Article PubMed Google Scholar
Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).
CAS Article PubMed Google Scholar
Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).
CAS Article PubMed Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).
CAS Article PubMed Google Scholar
Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).
CAS Article PubMed Google Scholar
Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).
Article PubMed PubMed Central Google Scholar
Liu, C. L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 3, e328 (2005).
Article CAS PubMed PubMed Central Google Scholar
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).
CAS Article PubMed Google Scholar
Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).
CAS Article PubMed Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
CAS Article PubMed Google Scholar
Koch, C. M. et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res. 17, 691–707 (2007).
CAS Article PubMed PubMed Central Google Scholar
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet. 39, 311–318 (2007).
CAS Article PubMed Google Scholar
Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).
CAS Article PubMed PubMed Central Google Scholar
Roh, T. Y., Cuddapah, S., Cui, K. & Zhao, K. The genomic landscape of histone modifications in human T cells. Proc. Natl Acad. Sci. USA 103, 15782–15787 (2006).
CAS Article PubMed PubMed Central Google Scholar
Roh, T. Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19, 542–552 (2005).
CAS Article PubMed PubMed Central Google Scholar
Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).
CAS Article PubMed PubMed Central Google Scholar
Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of exact transcriptional activity. Mol. Cell 11, 709–719 (2003).
CAS Article PubMed Google Scholar
Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).
CAS Article PubMed PubMed Central Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).
CAS Article PubMed Google Scholar
Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).
CAS Article PubMed PubMed Central Google Scholar
Squazzo, S. L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006).
CAS Article PubMed PubMed Central Google Scholar
Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007).
CAS Article PubMed Google Scholar
Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).
CAS Article PubMed Google Scholar
Roh, T. Y., Wei, G., Farrell, C. M. & Zhao, K. Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Res. 17, 74–81 (2007).
CAS Article PubMed PubMed Central Google Scholar
Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).
CAS Article PubMed Google Scholar
Raisner, R. M. et al. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).
CAS Article PubMed PubMed Central Google Scholar
Zhang, H., Roberts, D. N. & Cairns, B. R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).
CAS Article PubMed PubMed Central Google Scholar
Guillemette, B. et al. Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol. 3, e384 (2005).
Article CAS PubMed PubMed Central Google Scholar
Li, B. et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl Acad. Sci. USA 102, 18385–18390 (2005).
CAS Article PubMed PubMed Central Google Scholar
Guillemette, B. & Gaudreau, L. Reuniting the contrasting functions of H2A.Z. Biochem. Cell Biol. 84, 528–535 (2006).
CAS Article PubMed Google Scholar
Mito, Y., Henikoff, J. G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).
CAS Article PubMed Google Scholar
Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005).
CAS Article PubMed Google Scholar
Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7, 1121–1124 (2000).
CAS Article PubMed Google Scholar
Jin, C. & Felsenfeld, G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev. 21, 1519–1529 (2007).
CAS Article PubMed PubMed Central Google Scholar
Lohr, D. & Lopez, J. GAL4/GAL80-dependent nucleosome disruption/deposition on the upstream regions of the yeast GAL1–10 and GAL80 genes. J. Biol. Chem. 270, 27671–27678 (1995).
CAS Article PubMed Google Scholar
Straka, C. & Horz, W. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10, 361–368 (1991).
CAS Article PubMed PubMed Central Google Scholar
Yuan, G. C. et al. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309, 626–630 (2005). This study profiled nucleosome positions at high resolution across most of chromosome 3 of the S. cerevisiae genome with MNase digestion followed by hybridization to DNA microarrays.
CAS Article PubMed Google Scholar
Lee, W. et al. A high-resolution atlas of nucleosome occupancy in yeast. Nature Genet. 39, 1235–1244 (2007).
CAS Article PubMed Google Scholar
Johnson, S. M., Tan, F. J., McCullough, H. L., Riordan, D. P. & Fire, A. Z. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin. Genome Res. 16, 1505–1516 (2006).
CAS Article PubMed PubMed Central Google Scholar
Albert, I. et al. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576 (2007).
CAS Article PubMed Google Scholar
Barski, A. et al. Response: mapping nucleosome positions using ChIP-Seq data. Cell 131, 832–833 (2007).
CAS Article Google Scholar
Schmid, C. D. & Bucher, P. ChIP–Seq data reveal nucleosome architecture of human promoters. Cell 131, 831–832 (2007).
CAS Article PubMed Google Scholar
Satchwell, S. C., Drew, H. R. & Travers, A. A. Sequence periodicities in chicken nucleosome core DNA. J. Mol. Biol. 191, 659–675 (1986).
CAS Article PubMed Google Scholar
Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).
CAS Article PubMed PubMed Central Google Scholar
Ioshikhes, I. P., Albert, I., Zanton, S. J. & Pugh, B. F. Nucleosome positions predicted through comparative genomics. Nature Genet. 38, 1210–1215 (2006).
CAS Article PubMed Google Scholar
Peckham, H. E. et al. Nucleosome positioning signals in genomic DNA. Genome Res. 17, 1170–1177 (2007).
CAS Article PubMed PubMed Central Google Scholar
Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).
CAS Article PubMed Google Scholar
Crawford, G. E. et al. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl Acad. Sci. USA 101, 992–997 (2004).
CAS Article PubMed PubMed Central Google Scholar
Weil, M. R., Widlak, P., Minna, J. D. & Garner, H. R. Global survey of chromatin accessibility using DNA microarrays. Genome Res. 14, 1374–1381 (2004).
CAS Article PubMed PubMed Central Google Scholar
Crawford, G. E. et al. DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays. Nature Methods 3, 503–509 (2006).
CAS Article PubMed PubMed Central Google Scholar
Crawford, G. E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).
CAS Article PubMed PubMed Central Google Scholar
Xi, H. et al. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 3, e136 (2007).
Article CAS PubMed PubMed Central Google Scholar
Nagy, P. L., Cleary, M. L., Brown, P. O. & Lieb, J. D. Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin. Proc. Natl Acad. Sci. USA 100, 6364–6369 (2003).
CAS Article PubMed PubMed Central Google Scholar
Hogan, G. J., Lee, C. K. & Lieb, J. D. Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters. PLoS Genet. 2, e158 (2006).
Article CAS PubMed PubMed Central Google Scholar
Giresi, P. G., Kim, J., McDaniell, R. M., Iyer, V. R. & Lieb, J. D. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin. Genome Res. 17, 877–885 (2007).
CAS Article PubMed PubMed Central Google Scholar
Liu, X. S. Getting started in tiling microarray analysis. PLoS Comput. Biol. 3, 1842–1844 (2007).
CAS PubMed Google Scholar
Ji, H. & Wong, W. H. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21, 3629–3636 (2005).
CAS Article PubMed Google Scholar
Johnson, W. E. et al. Model-based analysis of tiling-arrays for ChIP–chip. Proc. Natl Acad. Sci. USA 103, 12457–12462 (2006).
CAS Article PubMed PubMed Central Google Scholar
Marinescu, V. D. et al. START: an automated tool for serial analysis of chromatin occupancy data. Bioinformatics 22, 999–1001 (2006).
CAS Article PubMed Google Scholar
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
CAS Article PubMed PubMed Central Google Scholar
Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nature Genet. 39, 1522–1527 (2007).
CAS Article PubMed Google Scholar
Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nature Immunol. 5, 1017–1027 (2004).
CAS Article Google Scholar
Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).
CAS Article PubMed Google Scholar
Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).
CAS Article PubMed Google Scholar
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002). This paper introduced the chromosome conformation capture (3C) technique.
CAS Article PubMed Google Scholar
Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006).
CAS Article PubMed Google Scholar
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354 (2006).
CAS Article PubMed Google Scholar
Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).
CAS Article PubMed PubMed Central Google Scholar
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).
CAS Article PubMed Google Scholar
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).
CAS Article PubMed Google Scholar
Grewal, S. I. & Elgin, S. C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).
CAS Article PubMed PubMed Central Google Scholar
Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).
CAS Article PubMed Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).
CAS Article PubMed PubMed Central Google Scholar
Kim, T. H. & Ren, B. Genome-wide analysis of protein–DNA interactions. Annu. Rev. Genomics Hum. Genet. 7, 81–102 (2006).
Article CAS PubMed Google Scholar
van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature Biotechnol. 18, 424–428 (2000).
CAS Article Google Scholar
Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).
CAS Article PubMed Google Scholar
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).
CAS Article PubMed Google Scholar
Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).
CAS Article PubMed Google Scholar
O'Neill, L. P., VerMilyea, M. D. & Turner, B. M. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nature Genet. 38, 835–841 (2006).
CAS Article PubMed Google Scholar
Dahl, J. A. & Collas, P. Q2C hIP, a quick and quantitative chromatin immunoprecipitation assay, unravels epigenetic dynamics of developmentally regulated genes in human carcinoma cells. Stem Cells 25, 1037–1046 (2007).
CAS Article PubMed Google Scholar
Wolffe, A. P. & Hayes, J. J. Chromatin disruption and modification. Nucleic Acids Res. 27, 711–720 (1999).
CAS Article PubMed PubMed Central Google Scholar